miércoles, 6 de junio de 2012

INTEGRANTES:

ESTE BLOG HA SIDO REALIZADO POR LOS INTEGRANTES:


- JESÚS MIGUEL OJEDA NÚÑEZ.
- OSMER SUAREZ.
- JENDERSSON AZUAJE.


PROF: JESÚS BRICEÑO.


FÍSICA 21. SEMESTRE: A 2012. ÉXITOS!

domingo, 3 de junio de 2012

CORRIENTE ALTERNA.


Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como lahistéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura.
A continuación se indican otros valores significativos de una señal sinusoidal:
  • Valor instantáneo (a(t)): Es el que toma la ordenada en un instante, t, determinado.
  • Valor pico a pico (App): Diferencia entre su pico o máximo positivo y su pico negativo. Dado que el valor máximo de sen(x) es +1 y el valor mínimo es -1, una señal sinusoidal que oscila entre +A0 y -A0. El valor de pico a pico, escrito como AP-P, es por lo tanto (+A0)-(-A0) = 2×A0.
  • Valor medio (Amed): Valor del área que forma con el eje de abcisas partido por su período. El valor medio se puede interpretar como el componente de continua de la oscilación sinusoidal. El área se considera positiva si está por encima del eje de abcisas y negativa si está por debajo. Como en una señal sinusoidal el semiciclo positivo es idéntico al negativo, su valor medio es nulo. Por eso el valor medio de una Oscilación sinusoidal se refiere a un semiciclo. Mediante el cálculo integral se puede demostrar que su expresión es la siguiente;

A_{med}= {2 A_0 \over {\pi}}
  • Pico o cresta: Valor máximo, de signo positivo (+), que toma la oscilación sinusoidal del espectro electromagnético, cada medio ciclo, a partir del punto “0”. Ese valor aumenta o disminuye a medida que. la amplitud “A” de la propia oscilación crece o decrece positivamente por encima del valor "0".

  • Valor eficaz (A): su importancia se debe a que este valor es el que produce el mismo efecto calorífico que su equivalente en corriente continua. Matemáticamente, el valor eficaz de una magnitud variable con el tiempo, se define como la raíz cuadrada de la media de los cuadrados de los valores instantáneos alcanzados durante un período:

A= \sqrt {{1 \over {T}} {\int_{0}^{T} a^2(t) dt}}
En la literatura inglesa este valor se conoce como R.M.S. (root mean square, valor cuadrático medio), y de hecho en matemáticas a veces es llamado valor cuadrático medio de una función. En el campo industrial, el valor eficaz es de gran importancia ya que casi todas las operaciones con magnitudes energéticas se hacen con dicho valor. De ahí que por rapidez y claridad se represente con la letra mayúscula de la magnitud que se trate (I, V, P, etc.). Matemáticamente se demuestra que para una corriente alterna sinusoidal el valor eficaz viene dado por la expresión:

A ={A_0 \over {\sqrt 2}}.
El valor A, tensión o intensidad, es útil para calcular la potencia consumida por una carga. Así, si una tensión de corriente continua (CC), VCC, desarrolla una cierta potencia P en una carga resistiva dada, una tensión de CA de Vrms desarrollará la misma potencia P en la misma carga si Vrms = VCC.
Para ilustrar prácticamente los conceptos anteriores se considera, por ejemplo, la corriente alterna en la red eléctrica doméstica en Europa: cuando se dice que su valor es de 230 V CA, se está diciendo que su valor eficaz (al menos nominalmente) es de 230 V, lo que significa que tiene los mismos efectos caloríficos que una tensión de 230 V de CC. Su tensión de pico (amplitud), se obtiene despejando de la ecuación antes reseñada:

V_0=V_{ef} \cdot \sqrt 2.
Así, para la red de 230 V CA, la tensión de pico es de aproximadamente 325 V y de 650 V (el doble) la tensión de pico a pico.
Su frecuencia es de 50 Hz, lo que equivale a decir que cada ciclo de la oscilación sinusoidal tarda 20 ms en repetirse. La tensión de pico positivo se alcanza a los 5 ms de pasar la oscilación por cero (0 V) en su incremento, y 10 ms después se alcanza la tensión de pico negativo. 


PROPIEDADES MAGNÉTICAS DE LA MATERIA.


El magnetismo no es más que el fenómeno físico asociado con la atracción de determinados materiales; es decir por medio del cual los materiales ejercen fuerza de atracción o de repulsión sobre otros materiales. Las fuerzas magnéticas son producidas por el movimiento de partículas cobradas como los electrones, mientras indican la relación íntima entre electricidad y magnetismo. El marco unificado para estas dos fuerzas se llama la teoría electromagnética.
Un anillo de corriente eléctrica genera una región de atracción física, o campo magnético, el campo magnético no es mas que la región del espacio en la que se manifiestan los fenómenos magnéticos. Estos actúan según unas imaginarias "líneas de fuerza": éstas son el camino que sigue la fuerza magnética conocidas también como líneas de flujo magnético (este campo se traduce en unas líneas de fuerza y dos polos de los que parten estas líneas conocidas como bipolar).La intensidad o dirección del campo magnético en un determinado punto cercano al anillo de corriente viene dado por H, una magnitud vectorial.
La evidencia más familiar de magnetismo es que la fuerza atractiva o repulsiva observó para actuar entre los materiales magnéticos como hierro. Se encuentran los efectos más sutiles de magnetismo, sin embargo, en toda la materia. Estos efectos han proporcionado las pistas importantes a la estructura atómica de materia.
Magnitudes Magnéticas:
En el espacio libre que rodea a una fuente de campo magnético, es posible definir la inducción magnética, B, cuya magnitud es la densidad de flujo. La inducción esta relacionada con el campo magnético, por:
= µ0x donde:
  • µo es la permeabilidad del vació >Propiedades magnéticas de los materiales
    H/m.
  • B es la inducción magnética cuya magnitud es la densidad del fluido.
  • es la intensidad o dirección del campo magnético, que es una magnitud vectorial
Si un sólido es introducido en el campo magnético, la intensidad de la inducción se vera modificada, pero sigue siendo expresada de forma similar:
= µx H. donde:
- µ es la permeabilidad del sólido. Y las demás variables siguen de igual magnitud que en la ecuación anterior.
Todo estudiante o investigador de esta rama debe saber que una forma alternativa de la ley de Ohm es:
1/ A = (V/ l)
Si aplicamos esta forma alternativa de la ley de Ohm al campo magnético obtenemos que la I/A es la densidad de corriente y V/I es el gradiente de voltaje. Se observa entonces que la inducción magnética es análoga a la densidad de corriente y el campo magnético H es análogo al gradiente de voltaje (campo eléctrico), con la permeabilidad µ correspondiendo a la conductividad. La presencia de un sólidos ha modificado la inducción. La contribución por separado del sólido se observa en la expresión:
= µ x H =µo (H+M) donde:
- es la magnetización del sólido, y el término µorepresenta el campo magnético inducido extra asociado al sólido.
Se puede describir el comportamiento magnético de un sólido por su permeabilidad relativa que viene dada por la siguiente ecuación:
µr = µ donde:
  • µ es la permeabilidad del sólido.
  • µo es la permeabilidad del vació >Propiedades magnéticas de los materiales
    H/m.
Las unidades de estos términos magnéticos en el sistema MKS s son consistentes con las aceptadas en el SI, y estas son:
  • Para la intensidad de B webers/ metro > (Wb/m2 ).
  • Para µ Webers/ amperios . metro > (Wb/ A.m) ó henrios/ metro > (H/m).
  • Para amperios/ metro > (A/m).
Como la magnetización de un material magnético es proporcional al campo aplicado, se define un factor de proporcionalidad llamado susceptibilidad magnética:
Propiedades magnéticas de los materiales
donde:

Xes la susceptibilidad magnética.
Propiedades de los materiales magnéticos:
Materiales Magnéticos: estos materiales son aquellos que poseen una forma especializada de energía que esta relacionada con la radiación electromagnética, y sus propiedades y estructura se distinguen de los demás por las características magnéticas que poseen.
Propiedades Magnéticas Macroscópicas: son producto de los momentos magnéticos asociados con los electrones individuales. Cuando el electrón gira alrededor del núcleo, se convierte en una carga eléctrica en movimiento, por lo que se genera un momento magnético. Cada electrón gira alrededor de si mismo creando un momento magnético.
El momento magnético neto de un átomo es la suma de los momentos magnéticos generados por los electrones. Si incluyen los momentos orbítales, de rotación, y el hecho de que los momentos pueden cancelarse.
En los átomos donde el nivel de energía de los electrones están completamente llenos, todos los momentos se cancelan. Estos materiales no puedes ser magnetizados permanentemente (Gases inertes y algunos materiales iónicos).
De acuerdo a sus propiedades magnéticas y cuando los materiales se someten a un campo magnético, estos se pueden clasificar en:
  • Diamagnéticos: los materiales diamagnéticos son `débilmente repelidos' por las zonas de campo magnético elevado. Cuando se someten a un campo, los dipolos se orientan produciendo campos magnéticos negativos, contrarios al campo aplicado. Los valores de susceptibilidad de estos materiales es pequeña y negativa y su permeabilidad próxima a la unidad. También estos materiales son una forma muy débil de magnetismo, la cual es no permanente y persiste no solamente cuando se aplica un campo externo.
  • Paramagnéticos: los materiales paramagnéticos son débilmente atraído por las zonas de campo magnético intenso. Se observa frecuentemente en gases. Los momentos dipolares se orientan en dirección al campo, y tiene permeabilidades próximas a la unidad y su susceptibilidad es pequeña pero positiva. Este efecto desaparece al dejar de aplicar el campo magnético.Es decir que el paramagnetismo se produce cuando las moléculas de una sustancia tienen un momento magnético permanente. El campo magnético externo produce un momento que tiende a alinear los dipolos magnéticos en la dirección del campo. La agitación térmica aumenta con la temperatura y tiende a compensar el alineamiento del campo magnético. En las sustancias paramagnéticas la susceptibilidad magnética es muy pequeña comparada con la unidad.
  • Ferromagnéticos: se caracterizan por ser siempre metálicos, y su intenso magnetismo no es debido a los dipolos. Este magnetismo puede ser conservado o eliminado según se desee, los 3 materiales ferromagnéticos son el hierro, el cobalto y el níquel. La causa de este magnetismo son los electrones desapareados de la capa 3d, que presentan estos elementos. Como se ha indicado, los materiales ferromagnéticos afectan drásticamente las características de los sistemas en los que se los usa. Los materiales ferromagnéticos no son `lineales'.
    La magnetización en los ferromagnéticos se debe a la curva de histéresis. Una vez producida la magnetización se intenta eliminar el campo magnético, pero para valor de campo magnético cero el material sigue magnetizado, y para poder desmagnetizarlo es necesaria la aplicación de un campo negativo o fuerza coercitiva.
    Las curvas de histéresis varían a medida que varía la temperatura a medida que aumenta la temperatura la magnetización disminuye, hasta llegar a la temperatura de Curie, en la que el material deja de comportarse como ferromagnético y pasa a comportarse como paramagnético.
    Los materiales ferromagnéticos llegan a un momento en que aunque se siga aplicando el campo magnético no se magnetizan más y alcanza la inducción de saturación, y una vez retirado el campo no pierde toda la magnetización sino que la guarda en lo que se conoce como inducción remanente.
    Estos materiales son fuertemente atraídos por las zonas de campo magnético intenso (presentan además fenómenos de histéresis y existen dominios ferromagnéticos). Se observa en fierro, niquel, cobalto y aleaciones.
    • Ferrimagnéticos: es la base de la mayoría de los imanes metálicos de utilidad, los materiales magnéticos cerámicos se basan en un fenómeno ligeramente diferente. En cuanto a la histéresis, el comportamiento es básicamente el mismo. Sin embargo, la estructura cristalina de la mayoría de los materiales magnéticos cerámicos comunes implica unemparejamiento antiparalelo de los spines de los electrones, reduciendo por tanto el movimiento magnético neto que es posible alcanzar en los metales. Este fenómeno se distingue del ferromagnetismo mediante un nombre ligeramente diferente denominándose ferrimagnetismo.

LEY DE FARADAY.


La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducidoen un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:1
En resumen: "La cantidad de sustancia que se oxida o se reduce en los electrodos de una cuba electrolítica es proporcional a la cantidad de electricidad depositada"
\oint_C \vec{E} \cdot \vec{dl} = - \ { d \over dt }   \int_S   \vec{B} \cdot \vec{dA}
Donde \vec{E} es el campo eléctrico, d\vec{l} es el elemento infinitesimal del contorno C\vec{B} es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de \vec{dA} están dadas por la regla de la mano derecha.
La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.
Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:
\nabla \times \vec{E} = -\frac{\partial \vec{B}} {\partial t}
Ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.
En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:
\,V_\varepsilon = -N{d \Phi \over d t}
Donde Vε es el voltaje inducido y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección voltaje inducido(el signo negativo en la fórmula) se debe a la ley de Lenz.

CAMPO MAGNÉTICO.


Magnetismo
Uno de los aspectos del magnetismo, ''que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que une ambas fuerzas se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.
Historia de su estudio
El fenómeno del magnetismo se conoce desde tiempos antiguos. La piedra imán o magnetita, un óxido de hierro que tiene la propiedad de atraerlos objetos de hierro, ya era conocida por los griegos, los romanos y los chinos. Cuando se pasa una piedra imán por un pedazo de hierro, éste adquiere a su vez la capacidad de atraer otros pedazos de hierro. Los imanes así producidos están `polarizados', es decir, cada uno de ellos tiene dos extremos llamados polos norte y sur. Los polos iguales se repelen, y los polos opuestos se atraen.
La brújula se empezó a utilizar en Occidente como instrumento de navegación alrededor del 1300 d.C. En el siglo XIII, el erudito francés Petrus Peregrinus realizó importantes investigaciones sobre los imanes. Sus descubrimientos no se superaron en casi300 años,hasta que elfisico y médico británico William Gilbert publicó su libro, De magnete en 1600. Gilbert aplicó métodos científicos al estudio de la electricidad y el magnetismo. Una de las ideas principales que presenta en su obra es la de que la orientación natural de una aguja magnética se debe al hecho de que la Tierra se comporta como un enorme imán. De acuerdo con Gilbert, el polo Norte geográfico de la Tierra también debe ser un polo magnético que atrae al extremo norte de una aguja magnética. De modo similar, el polo Sur geográfico de la Tierra se com­porta como un polo magnético que atrae al polo sur de la aguja de una brújula. Debido a estas fuerzas de atracción, tal aguja (o cualquier otro imán en forma de barra) tien­de a orientarse en la dirección Norte-Sur. Posteriormente, en 1750, el geólogo británico John Michell inventó una balanza que utilizó para estudiar las fuerzas magnéticas. Michell demostró que la atracción o repulsión entre dos polos magnéticos disminuye a medida que aumenta el cuadrado de la distancia entre ellos. El físico francés Charles de Coulomb, que había medido las fuerzas entre cargas eléctricas, verificó posteriormente la observación de Michell con una gran precisión.
Campo magnético
Una barra imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un "campo magnético". Los campos magnéticos suelen representarse mediante "líneas de campo magnético" o "líneas de fuerza". En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de fuerza, y la intensidad del campo es inversamente proporcional al espacio entre las líneas. En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con un polo del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del mán, donde las líneas de fuerza están más separadas, el campo magnético es más débil. Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza. La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando una brújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas. Marcando la dirección que señala la brújula al colocarla en diferentes puntos alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza. Igualmente, si se agitan limaduras de hierro sobre una hoja de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.
Las líneas del campo magnético describen de forma similar la estructura del campo magnético en tres dimensiones. Se definen: Si en cualquier punto de dicha línea colocamos una aguja de compás ideal, libre para girar en cualquier dirección, la aguja siempre apuntará a lo largo de la línea de campo.
Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos 'rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas.
Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafos de masas.
La unidad SI del campo magnético es el tesla (T). Otra unidad que se usa mucho todavía es el gauss (G). Esta última unidad tiene la ventaja de que un gauss es aproximadamente la intensidad del campo magnético en la superficie terrestre. El tesla es una unidad mucho mayor:
1 T = 10,000 G, 104 G
El campo producido entre las caras de los polos de los grandes electroimanes de laboratorio típicamente está entre 1 y 3. El campo cerca de las caras polares de un buen imán permanente es de unos 0.4 T.
Las líneas de campo convergen donde la fuerza magnética es mayor y  se separan donde es más débil. Por ejemplo, en una barra imantada compacta o "dipolo", las líneas de campo se separan a partir de un polo y convergen en el otro y la fuerza magnética es mayor cerca de los polos donde se reúnen. El comportamiento de las líneas en el campo magnético terrestre es muy similar.
En la descripción del campo magnético son muy útiles las líneas del campo magnético, o líneas de flujo, como se les conoce. Como sucedió en el campo E, el campo B tiene una intensidad proporcional a la densidad de esas líneas de flujo, y a menudo se usa el concepto de densidad de flujo magnético para B. Si en alguna rejón la densidad del flujo B es uniforme, el flujo total que pasa a través de un área determinada es:
Campo magnético
siendo la componente de B perpendicular al área A, y Wb la abreviatura de weber, la unidad SI del flujo magnético. El concepto de flujo es muy útil, especialmente para tratar la inducción electromagnética.

El campo magnético de un imán de herradura se pone de manifiesto por la distribución de las limaduras de hierro, que indican la intensidad y dirección del campo en cada punto. Las limaduras se alinean con las `líneas de campo', que muestran la dirección del campo en cada punto. Cuanto más juntas están las líneas, más intenso es el campo.
Las líneas de campo fueron introducidas por Michael Faraday, que las denominó "líneas de fuerza". Durante muchos años fueron vistas meramente como una forma de visualizar los campos magnéticos y los ingenieros eléctricos preferían otra formas, más útiles matematicamente. Sin embargo no era así en el espacio, donde las líneas eran fundamentales para la forma en que se movían los electrones e iones.
Estas partículas cargadas eléctricamente tienden a permanecer unidas a las líneas de campo donde se asientan, girando en espiral a su alrededor mientras se deslizan por ellas, como las cuentas de un collar.

Campo magnético
Campo magnético

CIRCUITOS ELÉCTRICOS.

Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistenciasinductorescondensadoresfuentesinterruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores), y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicoses denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.

Partes:


  • Componente: Un dispositivo con dos o más terminales en el que puede fluir interiormente una carga. En la figura 1 se ven 9 componentes entre resistores y fuentes.
  • Nodo: Punto de un circuito donde concurren varios conductores distintos. A, B, D, E son nodos. Nótese que C no es considerado como un nodo puesto que es el mismo nodo A al no existir entre ellos diferencia de potencial o tener tensión 0 (VA - VC = 0).
  • Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, BC por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.
  • Malla: Un grupo de ramas que están unidas en una red y que a su vez forman un lazo.
  • Fuente: Componente que se encarga de transformar algún tipo de energía en energía eléctrica. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2.
  • Conductor: Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.

Los circuitos eléctricos se clasifican de la siguiente forma:

   {\color{Blue}\mbox{Tipo de señal}}
   \quad
   \begin{cases}
      \mbox{Corriente continua} \\
      \mbox{Corriente alterna}
   \end{cases}

   {\color{Blue}\mbox{Tipo de régimen}}
   \quad
   \begin{cases}
      \mbox{Corriente periódica}   \\
      \mbox{Corriente transitoria} \\
      \mbox{Permanente}
   \end{cases}

   {\color{Blue}\mbox{Tipos de componentes}}
   \quad
   \begin{cases}
      \mbox{Eléctricos} \\
      \mbox{Electrónicos} \quad
      {\begin{cases}
         \mbox{Digitales}\\
         \mbox{Analógicos} \\
         \mbox{Mixtos}
      \end{cases}}
   \end{cases}

   {\color{Blue}\mbox{Tipo de configuración}}
   \quad
   \begin{cases}
      \mbox{Serie}    \\
      \mbox{Paralelo} \\
      \mbox{Mixto}
   \end{cases}
Existen unas leyes fundamentales que rigen a cualquier circuito eléctrico. Estas son:
  • Ley de corriente de Kirchhoff: La suma de las corrientes que entran por un nodo deben ser igual a la suma de las corrientes que salen por ese nodo.
  • Ley de tensiones de Kirchhoff: La suma de las tensiones en un lazo debe ser 0.
  • Ley de Ohm: La tensión en una resistencia es igual al producto del valor dicha resistencia por la corriente que fluye a través de ella.
  • Teorema de Norton: Cualquier red que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de corriente en paralelo con una resistencia.
  • Teorema de Thévenin: Cualquier red que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de tensión en serie con una resistencia.
Si el circuito eléctrico tiene componentes no lineales y reactivos, pueden necesitarse otras leyes mucho más complejas. Al aplicar estas leyes o teoremas se producirán un sistema de ecuaciones lineales que pueden ser resueltas manualmente o por computadora.

RESISTENCIA.


Resistencias Eléctricas
Cualquier material natural ofrece oposición al paso de la corriente eléctrica a través de ella. Este efecto se llama resistividad.
Los materiales conductores presentan una resistividad casi nula, los aislantes no permiten el flujo de corriente y los resistivos presentan cierta resistencia. Las resistencias son componentes eléctricos pasivos en lo que la tensión que se les aplica es proporcional a la intensidad que circula por ellos.
Generalmente la resistencia de un material aumenta cuando crece la temperatura. También la resistencia de conductor es proporcional a la longitud de ésta e inversamente proporcional a su sección.
Hay que puntualizar, para que no haya malos entendidos, que a veces llamarlas resistencias se le denominan resistores.
La medición en resistencias se hace en ohmios, su símbolo que es este 
Características de la Resistencias
Todas las resistencias tienen una tolerancia, esto es el margen de valores que rodean el valor nominal y en el que se encuentra el valor real de la resistencia. Su valor viene determinado por un porcentaje que va desde 0.001% hasta 20% el más utilizada es el de 10% . Esta tolerancia viene marcada por un código de colores.
La resistencias tienen un coeficiente de temperatura, este valor dependerá de la temperatura que alcance la resistencia cuando empiece a circular el flujo de electrones. Como cualquier elemento eléctrico y electrónico tiene un rango de trabajo y por tanto un límite de funcionamiento que vendrá determinado por su capacidad de disipar calor, la tensión y por su temperatura máxima; por tanto será la temperatura máxima con la cual podrá trabajar sin deteriorarse.
Tiene también un coeficiente de tensión que limitará el paso del corriente eléctrica entre sus dos extremos que será la variación relativa de cambio de tensión al que se someta.
Un factor también importante es el ruido que se debe a los cambios repentinos de aumento y disminución de corrientes continuos. La capacidad de la resistencia es la capacidad de mantener enel transcurso del tiempo el valor nominal de la resistencia será sometido a los cambios ambientales, largos periodos del funcionamiento que no deberá afectarla para nada.
Los materiales empleados para la fabricación de las resistencias son muy variados pero los más comunes son aleaciones de cobre, níquel y zinc en diversas proporciones de cada uno lo que hará variar la resistividad. Quien determinará un aumento de esta resistividad será el níquel, ya que si la aleación lleva porcentaje anto de éste, la resistencia tendrá gran resistividad.
Las aleaciones de cobre níquel y níquel-hierro tiene una resistividad de 10 a 30 veces mayor que el cobre y las aleaciones de níquel-cromo serán de 60 a 70 veces mayor que las de cobre y con un gran comportamiento en temperaturas elevadas.
También se puede utilizar el carbono ya que su resistividad entre 400 y 2.400 veces la del cobre, por este motivo se utiliza en las escobillas de los motores eléctricos.
Código de Colores
Hay varios tipos de resistencias vienen determinados por una representación de códigos de colores. Esto se realiza por medio de la estampación de unos anillos de colores en el cuerpo de la resistencia.
Estos anillos son cuatro o cinco y vienen especificados según se muestra en las ilustraciones.
'Resistencia eléctricas'
Tipos de Resistencias
Hay varios tipos de resistencias pero en definitiva se agrupan en fijas y variables. Las fijas se denominan de esta forma:
Bobinadas.
Suelen venir así para disipar potencia. Se fabrican sobre una base aislante en forma cilíndrica para enrollar un hilo de alta resistividad (wolframio, manganina, constatán). La longitud y sección del hilo darán su resistividad juntamente con la composición de éste. Suelen venir marcadas en la superficie y se utilizan para las grandes potencias pero con el inconveniente de ser inductivas.
Aglomeradas.
Están realizadas de una pasta con granos muy finos de grafito. Estas son de las más utilizadas. Sus valores vienen determinados por el código de colores.
Al igual que la bobinadas constan de un hilo enrollado pero se le somete a un proceso de vitrificación a alta temperatura (barniz especial) cuyo cometido es proteger el hilo resistivo y evitar que entren en contacto las espiras enrolladas. Es en este barniz donde se marca el código de colores.
Película de Carbono.
Se pone una fina capa de pasta de grafito encima de una base cilíndrica de cerámica. La sección y su composición determinarán el valor de la resistencia.
Pirolíticas.
Son muy parecidas a las anteriores, pero con una película de carbón rayada en forma de hélice para ajustar el valor de la resistencia. Son inductivas.
El otro tipo de resistencias son variables, nos interesa obtener una resistencia cuyo valor pueda variarse según la aplicación. Se fabrican bobinadas o de grafito, deslizantes o giratorias.
Circuitos en Serie y Paralelo
Los circuitos electrónicos se clasifican en circuitos en serie, paralelos y mixtos. Cada uno tiene una características específicas en tensión y corriente.
Circuito en serie
Para este modo de conexiones se escoge un circuito de corriente continua y así se podrá ver si caída de tensiones y pasos de corriente. En el gráfico, se puede disponer de un circuito en serie es disponer una resistencia detrás de otra, con lo cual se obtendrá puntos muy concretos donde se puede hacer diversos estudios de la caída de tensión y corriente.
Estos puntos son el punto A, anterior a la primera resistencia, el punto B que esta en la primera y la segunda resistencia, el punto C que se encuentra entre la segunda y tercera resistencia y por último el punto D
Para hacer esta medición se utiliza un polímetro o multímetro, el cual nos dará las mediciones correspondientes de voltaje y amperaje.
Para medir el voltaje o la caída de tensión se hace situando las dos puntas del multímetro y se pondrán en paralelo en el cable del circuito. Para la medición de la corriente se pondrán las puntas del multímetro en serie con cable del circuito.
El voltaje total del circuito será la suma total de los voltajes , encontrados en los puntos A,B,C y D; la corriente total es igual en todos los puntos que atraviese, por lo tanto la intensidad total será igual en A,B,C y D.
VT = Voltaje Total VT = V1 +V2 +V3
IT = Intensidad Total o Corriente Total IT = I1 + I2 + I3
Un circuito con resistencias en serie se puede simplificar en una sola resistencia. En todos los puntos del circuito en serie la corriente es constante por lo tanto la potencia o trabajo total será la suma de éstos en cada punto del circuito (A,B,C Y D).
Los circuitos eléctricos en serie son aplicaciones muy concretas. Nunca se nos ocurrirá conectar las bombillas de nuestra casa en serie, ya que esto supondría un caos a cualquiera de ellas, a excepciónde la última, se fundiría simplemente si apagamos una de ellas.
Se utilizan en las luces brillantes del árbol de navidad, en la iluminación de las autopistas etc.
'Resistencia eléctricas'
Circuito Paralelo
Un circuito paralelo es aquel que está formado por dos o más pequeños circuitos por los cuales pueden circular la corriente.
Para comprobar se puede observar el gráfico como conectamos tres resistencias en paralelo. Aquí se puede apreciar la intensidad total o corriente total, se divide en i1, i2 e i3, la suma de cada una de éstas nos dará el valor total de la corriente.
Circuito mixtos
Como se puede intuir, este tipo de circuitos son combinaciones de los circuitos tratados anteriormente, de tal forma que podamos obtener una resistencia equivalente realizando, igual que antes, algunos cálculos previos. Una forma fácil de resolverlos es hacer cuentas parciales, es decir, series y paralelos parciales hasta que se obtenga el circuito equivalente más simple que sea posible, para obtener el valor resistivo equilavente al circuito.
Este tipo de circuitos se suele utilizar cuando no disponemos de una resistencia específica, pero que, con la ayuda de otros valores, si nos es posible lograrlo.
'Resistencia eléctricas'
La Ley de Ohm
Se trata de una fórmula fundamental del mundo electrónico que permite relacionar la tensión, la corriente y la resistencia. Fue demostrada por Simón Ohm en 1826 y nos indica que la corriente que circula por un conductor es directamente proporcional a la tensión aplicada en sus extremos, e inversamente proporcional a la resistencia del mismo, esto es:
'Resistencia eléctricas'
I=Intensidad
V=Voltaje
R=Resistencia
Apéndice
Electricidad
Conjunto de fenómenos físicos que resultan de la existencia de cargas eléctricas y de las interacciones entre ellas.
Corriente Eléctrica
Movimiento ordenado de los electrones* a través de un hilo conductor entre dos puntos del mismo en los que existe una diferencia de potencial*
Resistencia
Acción y efecto de resistir o resistirse.

CAPACITORES.


Básicamente, un condensador o capacitor, en su expresión más simple, está formado por dos placas metálicas (conductoras de la electricidad) enfrentadas y separadas entre sí por una mínima distancia, y un dieléctrico, que se define como el material no conductor de la electricidad (aire, mica, papel, aceite, cerámica, etc.) que se encuentra entre dichas placas. La magnitud del valor de capacidad de un capacitor es directamente proporcional al área de sus placas e inversamente proporcional a la distancia que las separa. Es decir, cuanto mayor sea el área de las placas, mayor será el valor de capacidad, expresado en millonésimas de Faradios [µF], y cuanto mayor sea la distancia entre las placas, mayor será la aislación o tensión de trabajo del capacitor, expresadas en unidades de Voltios, aunque el valor de capacidad disminuye proporcionalmente cuanto más las placas se separan.
Tecnología de los capacitores electrolíticos
Dentro de la gran variedad de tecnologías de fabricación de capacitores, los electrolíticos son los de mayor capacidad, debido a que se recurre a reducir la separación entre las placas, a aumentar el área enfrentada de las mismas y a la utilización de un dieléctrico de elevada constante dieléctrica.
Los condensadores o capacitores electrolíticos deben su nombre a que el material dieléctrico que contienen es un ácido llamado electrolito y que se aplica en estado líquido. La fabricación de un capacitor electrolítico comienza enrollando dos láminas de aluminio separadas por un papel absorbente humedecido con ácido electrolítico. Luego se hace circular una corriente eléctrica entre las placas para provocar una reacción química que producirá una capa de óxido sobre el aluminio, siendo este óxido de electrolito el verdadero dieléctrico del capacitor. Para que pueda ser conectado en un circuito electrónico, el capacitor llevará sus terminales de conexión remachados o soldados con soldadura de punto. Por último, todo el conjunto se insertará en una carcaza metálica que le dará rigidez mecánica y se sellará herméticamente, en general, con un tapón de goma, que evitará que el ácido se evapore en forma precoz.
Un término muy común en la jerga de los fabricantes de capacitores electrolíticos es el de protocapacitor, con el cual se denomina a los capacitores fabricados y ensamblados que aun no se les ha hecho circular una corriente para que se forme la capa de óxido de electrolito. Este término lo utilizaremos más adelante para una mejor comprensión en este mismo artículo.
Cabe aclarar que, si bien existen capacitores con dieléctrico de papel, en el caso de los electrolíticos el papel entre placas cumple la función de sostener al ácido uniformemente en toda la superficie de las mismas.
Diversas fallas en los electrolíticos
Una falla en la uniformidad de la capa de óxido formada en algún punto de las placas produce un cortocircuito o una disminución de la tensión de trabajo del capacitor. Esta condición aumenta una corriente de fuga que provoca el sobrecalentamiento interno y la consiguiente expansión y evaporación del ácido, que al superar por presión el hermetismo del tapón de goma puede destruir por explosión al capacitor.
Si el sellado hermético del capacitor no es bueno, el ácido se seca y deja de actuar como dieléctrico. En este caso, el valor de capacidad se reduce progresivamente.
Un condensador que en un período de aproximadamente 4 años no recibe tensión (es decir, no se utiliza), comienza a deformarse internamente. En efecto, la capa de óxido de electrolito se reduce por sí misma si el capacitor no es conectado a una fuente de tensión continua, acercándose gradualmente a su condición primitiva de protocapacitor, cuando en fábrica estaba siendo formado. Es por eso que debería tenerse especial cuidado en conocer la fecha de fabricación de estos componentes cuasi perecederos si está por comprar, o preguntar el tiempo de inactividad de un aparato electrónico, si se apresta a repararlo. Un caso similar ocurre cuando se utiliza a un capacitor con tensiones mucho menores a su tensión nominal de trabajo; al estar prácticamente sin polarización de corriente continua, la capa de óxido se irá haciendo cada vez más angosta, hasta provocar la falla del circuito electrónico en donde trabaja.
Al estar los terminales del capacitor unidos por remaches o puntos de soldadura a las placas, existe en ambos casos una cierta resistencia de contacto. Si el capacitor trabaja en una condición de alto rizado (ripple) como, por ejemplo, el filtrado una fuente conmutada (switching), estas uniones eléctricas se calientan y se oxidan. Al calentarse y enfriarse, se dilatan y contraen respectivamente; estas sucesivas contracciones y dilataciones provocarán el aflojamiento de las uniones de los terminales, llegando incluso a dejar al capacitor en un estado de circuito abierto o con intermitencias, comúnmente llamadas falsos contactos. Por otra parte, estos falsos contactos producen un sobrecalentamiento, que acelera el proceso, en una especie de círculo vicioso. Esta condición especial es la que suele confundir a los técnicos más experimentados, pues un aparato puede funcionar correctamente en el instante inicial de encendido y fallar al alcanzar apenas unos grados de temperatura y viceversa.
Medición y comprobación de capacitores electrolíticos
Si bien existen varias pruebas y mediciones que pueden realizarse sobre un capacitor, mencionaremos aquellas que especialmente estén al alcance de un técnico estudiante o un profesional reparador y que sean de utilidad para la detección y solución de fallas en equipos electrónicos.
  • COMPROBACION DE CONTINUIDAD: se utiliza un óhmetro común para comprobar si el capacitor está en cortocircuito o con fugas de importancia, aunque no se podrá comprobar con certeza que esté a circuito abierto o con intermitencias internas.
  • MEDICION DE LA CORRIENTE DE FUGAS: se realiza con una fuente de alimentación de corriente continua que se ajusta a la tensión nominal de trabajo del capacitor y se aplica al mismo a través de un resistor de, por ejemplo, 1K ohms. La caída de tensión sobre el resistor, medida con un voltímetro, o el valor de corriente continua medido con un microamperímetro, luego de producirse la carga inicial, dará idea de la corriente de fuga, que deberá compararse con  la especificada por el fabricante en su hoja de datos. Este tipo de medición resulta útil en los capacitores conectados como acoplo entre etapas de, por ejemplo, amplificadores de audio.
  • MEDICION DE LA CAPACIDAD: puede utilizarse un puente LCR o un medidor de capacidad (capacímetro) y su lectura servirá para conocer si el valor de capacidad se encuentra dentro del rango de tolerancia especificada por el fabricante. Un capacitor en muy mal estado debería reflejar dicha condición en su valor de capacidad, sin embargo, en la práctica, una variación del 10 % en el valor de capacidad puede ocultar un daño mayor, de hasta el 120 %, si se elije evaluar al capacitor midiendo su Resistencia Serie Equivalente (ESR). La medición de la capacidad será de mayor utilidad para los diseñadores de circuitos de RF, osciladores, circuitos con ajuste de sintonía, etc.
  • MEDICION DE LA RESISTENCIA SERIE EQUIVALENTE (ESR): puede realizarse con un generador de RF generalmente ajustado a una frecuencia de unos 50 a 100 KHz. En serie con el capacitor se debe conectar un resistor igual a la impedancia de salida del generador y en paralelo con él, un milivoltímetro de RF o bien, un osciloscopio. Cuanta más diferencia de potencial exista sobre el resistor, mejor será el estado del capacitor. Las lecturas tomadas sólo servirán para la frecuencia elegida, perdiendo sentido el realizar comparaciones entre valores de ESR medidos a diferentes frecuencias. También puede utilizarse un medidor especializado de Resistencia Serie Equivalente, como el CAPACheck. Un instrumento de este tipo combina todos los instrumentos de laboratorio mencionados en la medición de ESR, ya conectados y ajustados adecuadamente a la misma frecuencia. Esta comprobación permitirá medir la resistencia serie de sus terminales, su unión a las placas, el estado de sequedad del electrolito interno y de la capa de óxido, es decir, cuán lejos está un capacitor de su condición inicial de protocapacitor, y será muy útil para determinar rápidamente el estado dinámico de los capacitores aun conectados a sus circuitos de trabajo.

    A diferencia de los capacitorescomunes, los capacitores electrolíticos se han desarrollado para lograr grandes capacidadesen dimensiones físicas reducidas.
    Este capacitor se logra con un dieléctrico especial. La capacidad de un capacitor tiene la siguiente fórmula:
    C = EA / d
    donde:
    - A = superficie
    - d = separación de placas
    - E = constante dieléctrica

    Si el valor de la constante dieléctrica (E) aumenta, también aumenta la capacitancia del capacitor.
    Fabricación de un capacitor electrolítico - Electrónica Unicrom
    Este dieléctrico es un electrolito constituido por óxido de aluminio impregnado en un papel absorbente.



    Cuando se fabrica el capacitorelectrolítico, se arrollan dos láminas de aluminio, separadas por un papel absorbente impregnado con el electrolito.
    Después se hace circular unacorriente entre las placas, con el propósito de provocar una reacción química que creará una capa de óxido de aluminio que será el dieléctrico (aislante). Ver diagrama.
    Físicamente consta de un tubo dealuminio cerrado, dentro del cual se haya el capacitor.
    Está provisto de una válvula de seguridad que se abre en caso de que que el electrolito (de allí viene el nombre) entre en ebullición y evitando el riesgo de explosión.
    Símbolo de un capacitor electrolítico - Electrónica UnicromCapacitor electrolítico - Electrónica Unicrom
    El capacitor electrolítico es un elemento polarizado, por lo que sus terminales no pueden ser invertidas. Generalmente el signo de polaridad viene indicado en el cuerpo delcapacitor.
    El inconveniente que tienen estos capacitores es que el voltaje permitido entre sus terminales no es muy alto. Si fuera necesario cambiar este capacitor, se debe buscar uno de la misma capacidad y con un voltaje igual o mayor al del capacitor dañado, pero...
    No se recomienda utilizar un capacitor de voltaje (dato de fabrica) muy superior al dañado pues, un capacitor que recibe un voltaje mucho menor que para la que fue diseñado, siente que no estuvo polarizado en corriente continua y la capa de óxido de aluminiodisminuye hasta que el elemento falla.
    Nota: Este tipo de capacitores deben de utilizarse lo antes posible después de su fabricación.
    Si el período de almacenamiento antes de usarlo es muy largo, al no recibir voltaje, se empieza a dañar (se reduce la capa de óxido de aluminio). Es conveniente tomar en cuenta siempre la fecha de fabricación.