domingo, 3 de junio de 2012

CORRIENTE ALTERNA.


Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como lahistéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura.
A continuación se indican otros valores significativos de una señal sinusoidal:
  • Valor instantáneo (a(t)): Es el que toma la ordenada en un instante, t, determinado.
  • Valor pico a pico (App): Diferencia entre su pico o máximo positivo y su pico negativo. Dado que el valor máximo de sen(x) es +1 y el valor mínimo es -1, una señal sinusoidal que oscila entre +A0 y -A0. El valor de pico a pico, escrito como AP-P, es por lo tanto (+A0)-(-A0) = 2×A0.
  • Valor medio (Amed): Valor del área que forma con el eje de abcisas partido por su período. El valor medio se puede interpretar como el componente de continua de la oscilación sinusoidal. El área se considera positiva si está por encima del eje de abcisas y negativa si está por debajo. Como en una señal sinusoidal el semiciclo positivo es idéntico al negativo, su valor medio es nulo. Por eso el valor medio de una Oscilación sinusoidal se refiere a un semiciclo. Mediante el cálculo integral se puede demostrar que su expresión es la siguiente;

A_{med}= {2 A_0 \over {\pi}}
  • Pico o cresta: Valor máximo, de signo positivo (+), que toma la oscilación sinusoidal del espectro electromagnético, cada medio ciclo, a partir del punto “0”. Ese valor aumenta o disminuye a medida que. la amplitud “A” de la propia oscilación crece o decrece positivamente por encima del valor "0".

  • Valor eficaz (A): su importancia se debe a que este valor es el que produce el mismo efecto calorífico que su equivalente en corriente continua. Matemáticamente, el valor eficaz de una magnitud variable con el tiempo, se define como la raíz cuadrada de la media de los cuadrados de los valores instantáneos alcanzados durante un período:

A= \sqrt {{1 \over {T}} {\int_{0}^{T} a^2(t) dt}}
En la literatura inglesa este valor se conoce como R.M.S. (root mean square, valor cuadrático medio), y de hecho en matemáticas a veces es llamado valor cuadrático medio de una función. En el campo industrial, el valor eficaz es de gran importancia ya que casi todas las operaciones con magnitudes energéticas se hacen con dicho valor. De ahí que por rapidez y claridad se represente con la letra mayúscula de la magnitud que se trate (I, V, P, etc.). Matemáticamente se demuestra que para una corriente alterna sinusoidal el valor eficaz viene dado por la expresión:

A ={A_0 \over {\sqrt 2}}.
El valor A, tensión o intensidad, es útil para calcular la potencia consumida por una carga. Así, si una tensión de corriente continua (CC), VCC, desarrolla una cierta potencia P en una carga resistiva dada, una tensión de CA de Vrms desarrollará la misma potencia P en la misma carga si Vrms = VCC.
Para ilustrar prácticamente los conceptos anteriores se considera, por ejemplo, la corriente alterna en la red eléctrica doméstica en Europa: cuando se dice que su valor es de 230 V CA, se está diciendo que su valor eficaz (al menos nominalmente) es de 230 V, lo que significa que tiene los mismos efectos caloríficos que una tensión de 230 V de CC. Su tensión de pico (amplitud), se obtiene despejando de la ecuación antes reseñada:

V_0=V_{ef} \cdot \sqrt 2.
Así, para la red de 230 V CA, la tensión de pico es de aproximadamente 325 V y de 650 V (el doble) la tensión de pico a pico.
Su frecuencia es de 50 Hz, lo que equivale a decir que cada ciclo de la oscilación sinusoidal tarda 20 ms en repetirse. La tensión de pico positivo se alcanza a los 5 ms de pasar la oscilación por cero (0 V) en su incremento, y 10 ms después se alcanza la tensión de pico negativo. 


No hay comentarios:

Publicar un comentario